Neural Networks (Geoffrey Hinton Course)
Some Simple Models or Neurons
$y$ output, $x_i$ input.
Linear Neurons
$y = b + \sum_{i} x_i w_i$
$w_i$ weights, $b$ bias
Binary Threshold Neurons
$z = \sum_{i} x_i w_i$
$y = 1$ if $z \geq \theta$, $0$ otherwise.
Or, equivalently,
$z = b + \sum_{i} x_i w_i$
$y = 1$ if $z \geq 0$, $0$ otherwise.
Rectified Linear Neurons
$z = b + \sum_{i} x_i w_i$
$y = z$ if $z > 0$, $0$ otherwise. (linear above zero, decision at zero.)
Sigmoid Neurons
Give a real-valued output that is a smooth and bounded function of their total input.
$z = b + \sum_{i} x_i w_i$
$y = \frac{1}{1 + e^{-z}}$