Restricted Partition Posets and Specht Modules

From TedYunWiki
Jump to navigation Jump to search
  • The topology of restricted partition posets - Richard Ehrenborg and JiYoon Jung

http://www.dmtcs.org/dmtcs-ojs/index.php/proceedings/article/view/dmAO0126/3556

  • Reflection arrangements and ribbon representations - Alexander Miller

http://arxiv.org/abs/1108.1429

  • PARTITIONS INTO EVEN AND ODD BLOCK SIZE AND SOME UNUSUAL CHARACTERS OF THE SYMMETRIC GROUPS - A. R. CALDERBANK, P. HANLON, and R. W. ROBINSON

http://plms.oxfordjournals.org/content/s3-53/2/288.full.pdf - the top homology group of the order complex of $\Pi_n^d\setminus \{\hat{1}\}$ is the Specht module on the border strip correspoding to the composition $(d, \ldots, d, d-1)$.

  • A basis for the d-divisible partition lattice - Wachs

http://www.sciencedirect.com/science?_ob=MImg&_imagekey=B6W9F-45NHY22-2W-1&_cdi=6681&_user=501045&_pii=S0001870896900146&_origin=browse&_zone=rslt_list_item&_coverDate=02%2F10%2F1996&_sk=998829997&wchp=dGLzVzb-zSkzk&md5=9761609d478d4cd792d53c224a778067&ie=/sdarticle.pdf - showed that the d-divisible partition lattice has EL-shelling.

$\Pi_n^d$ $\tilde{H}(\Pi_n^d)$ dimension Mobius function
$\Pi^\bullet_{\vec{c}}$ $\tilde{H}(\Pi^\bullet_{\vec{c}})$ dimension Mobius function

Question

  1. $\tilde{H}_{n-k-1}(\Pi_{(k,1,\ldots,1)}^\bullet \setminus \{\hat{1}\}) \cong_{S_n} \tilde{H}_{n-k-1}(B_n^k \setminus \{\hat{1}\}) \cong_{S_n} \text{Specht module of the border strip } (k,1,\ldots,1).$ Why?
    $\Pi_{(k,1,\ldots,1)}^\bullet$ is the set of pointed partitions $\{B_1, B_2, \ldots, B_t, \underline{Z}\}$ such that at least one of $B_i$ has cardinality greater than or equal to $k$. On the other hand, $B_n^k = \{A \in B_n ~\vert ~ \lvert A\rvert \geq k\}$.
    • Answer: $\tilde{H}_{n-k-1}(\Delta(\Pi_{(k,1,\ldots,1)}^\bullet \setminus \{\hat{1}\})) \cong \tilde{H}_{n-k-1} (\Delta_{(k,1,\ldots,1)}\setminus \{\hat{1}\}) \cong \tilde{H}_{n-k-1} (B_n(S)\setminus \{\hat{1}\}) \cong \tilde{H}_{n-k-1}(B_n^k \setminus \{\hat{1}\})$, where $S = \{k, k+1, \ldots, n\}$
  1. What can we say about the Stanley-Reisner ring of $\Pi_{\vec{c}}^\bullet$?

Remarks

  1. Wach's EL-labeling of $d$-divisible partition lattice does not work in the case of pointed partition poset because some the rising chain in an interval might be missing in the pointed partition poset.